Active transport of the survival motor neuron protein and the role of exon-7 in cytoplasmic localization.

نویسندگان

  • Honglai L Zhang
  • Feng Pan
  • Daewha Hong
  • Shailesh M Shenoy
  • Robert H Singer
  • Gary J Bassell
چکیده

Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by deletion and/or mutation of the survival motor neuron protein Gene (SMN1) that results in the expression of a truncated protein lacking the C terminal exon-7. Whereas SMN has been shown to be an important component of diverse ribonucleoprotein (RNP) complexes, its function in neurons is unknown. We hypothesize that the active transport of SMN may be important for neurite outgrowth and that disruption of exon-7 could impair its normal intracellular trafficking. SMN was localized in granules that were associated with cytoskeletal filament systems and distributed throughout neurites and growth cones. Live cell imaging of enhanced green fluorescent protein (EGFP)-SMN granules revealed rapid, bidirectional and cytoskeletal-dependent movements. Exon-7 was necessary for localization of SMN into the cytoplasm but was not sufficient for granule formation and transport. A cytoplasmic targeting signal within exon-7 was identified that could completely redistribute the nuclear protein D-box binding factor 1 into the cytoplasm. Neurons transfected with SMN lacking exon-7 had significantly shorter neurites, a defect that could be rescued by redirecting the exon-7 deletion mutant into neurites by a targeting sequence from growth-associated protein-43. These findings provide the first demonstration of cytoskeletal-based active transport of SMN in neuronal processes and the function of exon-7 in cytoplasmic localization. Such observations provide motivation to investigate possible transport defects or inefficiency of SMN associated RNPs in motor neuron axons in SMA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spinal Muscular Atrophy: A Short Review Article

Spinal muscular atrophy (SMA) is a genetic disorder which affect nervous system and is characterized with progressive distal motor neuron weakness. The survival motor neuron (SMN) protein level reduces in patients with SMA. Two different genes code survival motor neuron protein in human genome. Skeletal and intercostal muscles denervation lead to weakness, hypotony, hyporeflexia, respiratory fa...

متن کامل

The effect of endurance training on dynein motor protein expression in Wistar male rats sciatic nerves with diabetic neuropathy

Introduction: Most neurodegenerative diseases are associated with the disruption of axonal transport and this might also be related to diabetes-associated disorders affecting the nervous system. Cytoplasmic dynein is a very important motor driving the movement of a wide range of cargoes toward the minus ends of microtubules. The effects of endurance training on dynein motor protein expression i...

متن کامل

Drawing Word co-occurrence map of Spinal Muscular Atrophy disease

Introduction:  The purpose of this article is to evaluate the status of articles in the field of Spinal Muscular Atrophy According to the Scientometrics indices Word co-occurrence map of this field . Methods: The present study is an applied one with a quantitative approach and a descriptive approach. It has been done using scientometrics and the co-occurrence words analysis technique. Document...

متن کامل

Evidence for an association between Wnt-independent -catenin intracellular localization and ovarian apoptotic events in normal and PCO-induced rat ovary

The association of secreted frizzled related protein type 4 (Sfrp4) as an antagonist of Wnt mole-cules in apoptotic events has been reported previously. Moreover, its increased expression has been reported in the ovary of women with polycystic ovary (PCO). We have demonstrated in-creased Sfrp4 in PCO-induced rat ovary related to an increased number of apoptotic follicles showing nuclear ?cateni...

متن کامل

Splicing of a critical exon of human Survival Motor Neuron is regulated by a unique silencer element located in the last intron.

Humans have two nearly identical copies of the Survival Motor Neuron (SMN) gene, SMN1 and SMN2. In spinal muscular atrophy (SMA), SMN2 is not able to compensate for the loss of SMN1 due to exclusion of exon 7. Here we describe a novel inhibitory element located immediately downstream of the 5' splice site in intron 7. We call this element intronic splicing silencer N1 (ISS-N1). Deletion of ISS-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 23 16  شماره 

صفحات  -

تاریخ انتشار 2003